Probabilistic Feature Extraction from Multivariate Time Series Using Spatio-Temporal Constraints
نویسندگان
چکیده
A novel nonlinear probabilistic feature extraction method, called Spatio-Temporal Gaussian Process Latent Variable Model, is introduced to discover generalised and continuous low dimensional representation of multivariate time series data in the presence of stylistic variations. This is achieved by incorporating a new spatio-temporal constraining prior over latent spaces within the likelihood optimisation of Gaussian Process Latent Variable Models (GPLVM). As a result, the core pattern of multivariate time series is extracted, whereas a style variability is marginalised. We validate the method by qualitative comparison of different GPLVM variants with their proposed spatio-temporal versions. In addition we provide quantitative results on a classification application, i.e. view-invariant action recognition, where imposing spatiotemporal constraints is essential. Performance analysis reveals that our spatio-temporal framework outperforms the state of the art.
منابع مشابه
Exploratory Method for Spatio-Temporal Feature Extraction and Clustering: An Integrated Multi-Scale Framework
This paper presents an integrated framework for exploratory multi-scale spatio-temporal feature extraction and clustering of spatio-temporal data. The framework combines the multi-scale spatio-temporal decomposition, feature identification, feature enhancing and clustering in a unified process. The original data are firstly reorganized as multi-signal time series, and then decomposed by the mul...
متن کاملSpatio-Temporal Tensor Analysis for Whole-Brain fMRI Classification
Owing to prominence as a research and diagnostic tool in human brain mapping, whole-brain fMRI image analysis has been the focus of intense investigation. Conventionally, input fMRI brain images are converted into vectors or matrices and adapted in kernel based classifiers. fMRI data, however, are inherently coupled with sophisticated spatio-temporal tensor structure (i.e., 3D space × time). Va...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملSpatio-temporal Consistency Analysis of Amsr-e Soil Moisture Data Using Wavelet-based Feature Extraction and One-class Svm
Soil moisture is one of the most important climatic parameters playing an important role in the global climate system. Soil moisture can be derived from in-situ measurements as well as remotely sensed observations. However, these measurements typically lack the spatial and/or temporal resolutions necessary for modeling and applications. Land surface models (LSM) can be used to simulate the land...
متن کامل